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We consider numerical algorithms for the simulation of hydrodynamics of two-dimen-
sional vesicles suspended in a viscous Stokesian fluid. The motion of vesicles is governed
by the interplay between hydrodynamic and elastic forces. Continuum models of vesicles
use a two-phase fluid system with interfacial forces that include tension (to maintain local
‘‘surface” inextensibility) and bending. Vesicle flows are challenging to simulate. On the
one hand, explicit time-stepping schemes suffer from a severe stability constraint due to
the stiffness related to high-order spatial derivatives in the bending term. On the other
hand, implicit time-stepping schemes can be expensive because they require the solution
of a set of nonlinear equations at each time step.

Our method is an extension of the work of Veerapaneni et al. [S.K. Veerapaneni, D. Gue-
yffier, D. Zorin, G. Biros, A boundary integral method for simulating the dynamics of inex-
tensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics
228(7) (2009) 2334–2353], in which a semi-implicit time-marching scheme based on a
boundary integral formulation of the Stokes problem for vesicles in an unbounded medium
was proposed.

In this paper, we consider two important generalizations: (i) confined flows within arbi-
trary-shaped stationary/moving geometries; and (ii) flows in which the interior (to the ves-
icle) and exterior fluids have different viscosity. In the rest of the paper, we will refer to this
as the ‘‘viscosity contrast”. These two problems require solving additional integral equations
and cause nontrivial modifications to the previous numerical scheme. Our method does not
have severe time-step stability constraints and its computational cost-per-time-step is
comparable to that of an explicit scheme. The discretization is pseudo-spectral in space,
and multistep BDF in time. We conduct numerical experiments to investigate the stability,
accuracy and the computational cost of the algorithm. Overall, our method achieves several
orders of magnitude speed-up compared to standard explicit schemes.

As a preliminary validation of our scheme, we study the dependence of the inclination
angle of a single vesicle in shear flow on the viscosity contrast and the reduced area of
the vesicle, the lateral migration of vesicles in shear flow, the dispersion of two vesicles,
and the effective viscosity of a dilute suspension of vesicles.
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1. Introduction

Vesicles are closed lipid membranes suspended in a viscous medium. The mechanical deformation of vesicles and their inter-
action with viscous fluids are thought to play an important role in many biological phenomena [13,31] and are used experimen-
tally to understand properties of biomembranes [30]. In addition, vesicle mechanics have been used as models for the motion of
red and white blood cells [19,22], whose quantitative description will help in better understanding blood rheology.

In this article, we focus on numerical schemes for continuum models of vesicle dynamics. This is a challenging problem
because the motion and shape of the vesicles must be determined dynamically from a balance of interfacial forces with fluid
stresses. The shape dynamics of fluid vesicles is governed by the coupling of the flow within the membrane of the vesicle
with the hydrodynamics of the surrounding bulk fluid. Following our previous work on vesicle flows [34], we present a
semi-implicit numerical scheme for the simulation of the motion of arbitrarily shaped vesicles that can have a viscosity con-
trast with the background fluid. We also extend our formulation to handle interior flows and interaction of vesicles with
other moving particles with prescribed motion.

Our method is based on an integral equation formulation. In particulate flow problems involving vesicles, the elastic and
incompressibility properties of their membranes must be resolved and the numerical schemes must be modified in order to
accommodate these properties and to solve the resulting set of equations. Details of the boundary integral formulation for
elastic interfaces and incompressible vesicles can be found in the works of Pozrikidis [24,25].

The overwhelming majority of works on particulate flows uses explicit schemes that pose severe restrictions on the time
step. In contrast, semi-implicit methods result in two to three orders of magnitude larger step size that is almost indepen-
dent of the spacial grid size [34]. In contrast to stencil-based methods (e.g. finite element methods), integral equation for-
mulations avoid discretization of the overall domain and instead discretize only the vesicle-boundary and the boundary of
the enclosing domain. This is the main reason that integral equations have been used extensively for vesicle, and more gen-
erally, particulate and interfacial flow simulations [25].

1.1. Contributions

The boundary integral formulation coupled to the shape dynamics results in an integro-differential equation that is con-
strained by the local inextensibility. Extending our previous work [34], we use semi-implicit time-stepping, fast summation
schemes, and spectral discretization in space. The combination of these approaches for flows with interface singularities is
not unique. However, we are unaware of any previous analysis and application of implicit time-stepping schemes combined
with fast solvers to vesicles that have a viscosity contrast with the surrounding fluid and are interacting with confined
boundaries. These improvements enable the simulation a large number of interacting vesicles, as described in Sections 3
and 4, and depicted in Fig. 1.

The main contributions of this paper are:

� The extension of the techniques developed in [14,20,34] to vesicle flows in confined geometry and vesicles with viscosity
contrast.
� The numerical investigation of the stability and accuracy of the time-stepping schemes.
� A preliminary validation of our methodology by comparing our numerical results to results in the literature.

In particular, for validation, we investigate (i) the dependence of vesicles’ inclination angle in shear flow on viscosity con-
trast and reduced area; (ii) the lateral migration of vesicles in shear flow due to collision; and (iii) the rheology of a dilute
suspension of vesicles.

1.2. Limitations

The most significant limitation of our method is that the number of Fourier modes used to represent the vesicle mem-
brane and the time step are not chosen adaptively. The former is a minor limitation (in 2D) but the latter is quite significant.
Our spectral discretization (which we combine with a special high-order scheme for singular integrals) in space [34] results
in discretization errors that are dominated by the time-stepping scheme. In our experiments, 64–128 Fourier modes in space
are typically sufficient to fully resolve the shapes of the vesicles in the flow regimes we have examined. For more concen-
trated suspensions, adaptive schemes combined with a posteriori estimates may be necessary.

We solve the discretized system of equations using the Generalized Minimum Residual Method (GMRES) [29] with an
appropriate set of preconditioners, which are based on the spectral properties of the operators. Nonetheless, for very small
viscosity contrasts m� 1 (see Table 1 for its definition), the spectral properties of the operators change and a generic pre-
conditioner, as we use here, fails to fully compensate for the poor conditioning of the operators.

1.3. Related work

Vesicles are used, theoretically and experimentally, to investigate the properties of biological membranes [30], blood cells
[19,22], and drug-carrying capsules [32].



Fig. 1. In this figure, we demonstrate the capabilities of our method; in particular, its ability to resolve complex interactions between multiple vesicles. We
simulated the motion of 192 vesicles in a 2D Couette apparatus. The outer boundary is fixed while the inner boundary rotates with a constant angular
velocity. In this simulation, we used 64 discretization points per vesicle, 640 points on boundaries, and we took a total of 1000 time steps. The computations
were performed using MATLAB. The wall-clock time per time-step is 80 s on a Xeon processor, vesicle–vesicle and vesicle–boundary interactions are
evaluated on a NVIDIA Tesla Graphics Processing Unit with the total wall-clock time being three seconds per time-step. Four snapshots of the simulation are
shown. We zoom in on the region marked by the broken-line square to show the details of the interaction between vesicles. Here, t 2 [0,10] is the
nondimensional time. In this time span, the inner cylinder makes approximately one full rotation. The initial configuration was obtained by random
distribution of vesicles. Due to bending, the vesicle shapes are quickly smoothed to lower energy configurations. We resolve high curvature regions
(subfigures (c) and (d)), conserve vesicle areas and lengths (maxjA � A0j/A0 = 2.18e � 2 and maxjL � L0j/L0 = 4.69e � 2), and compute the hydrodynamic
interactions with sufficient accuracy to avoid collisions without employing a collision detection algorithm. Details on the accuracy and complexity of our
method are presented in later sections.
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Integral equation methods have been used extensively for the simulation of Stokesian particulate flows, mostly for drop-
lets (with or without viscosity contrast) and bubbles. These methods were introduced by Youngren and Acrivos [38] for a
flow past a rigid particle of arbitrary shape. An excellent review of numerical methods for Stokesian flows is done by Pozriki-
dis [25]. The present work is based on a formulation derived by Rallison and Acrivos [27] for two fluids separated by an inter-
face with surface forces and the work of Power et al., who, in a series of papers [20,21], introduced an integral equation
formulation of the Stokes problem on a multiply-connected domain with Dirichlet boundary conditions.

In spite of the large body of literature devoted to investigating the rheological properties of red blood cell and vesicles
suspensions, to the best our knowledge, the work on numerical methods for vesicle flows with viscosity contrast and con-
fined boundaries is rather limited. Freund [8] considers vesicles with no viscosity contrast in a bounded domain. In his work,
the boundaries are treated as panels fixed to their location with virtual springs. Zhou and Pozrikidis [39] consider the flow of
a periodic suspension of 2D viscous drops between two parallel plane walls, for which an explicit expression of Green’s func-
tion is available.

Let us also mention works related to the test-case flows we have used to validate our numerical method. Kraus et al. [13]
studied the dynamics of a vesicle and its steady-state inclination angle in the absence of viscosity contrast. Beaucourt et al.



Table 1
Index of frequently used symbols and operators.

Symbol Definition Operator Definition

cp Boundary of pth vesicle BðyÞx Bending operator, Eq. (2.8)
C Boundary of X B½g;N;K�ðxÞ Hydrodynamic operator due to fixed boundaries with density g Rotlet strength N, and

Stokeslet strength K, evaluated at point x, Appendix A
D Reduced area, Section 2.3
f Traction jump across

interface, Section 2.2
g Double-layer density over

C, Appendix A
l Fluid viscosity E½y;u; f�ðxÞ Hydrodynamic operator due to current configuration of

vesicle y, velocity field u, and traction jump f evaluated at point x, Eq. (2.3)
mp Viscosity contrast lp/l0

r Tension, or stress tensor
v Shear rate
xp Domain enclosed by cp PðxÞ Surface divergence operator, Eq. (2.1c)
X Domain of interest
p Pressure T ðy; xÞr Tension operator, Eq. (2.8)
T Simulation time horizon
u Velocity
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[5] tackled the same problem in the presence of viscosity contrast. Kantsler and Steinberg [10] reported results from exper-
imental study of the inclination angle of vesicles and their transition from tank-treading to tumbling. Misbah [18] looked at
the theoretical aspects of a vesicle’s inclination angle problem. Loewenberg [15], Loewenberg and Hinch [16] studied the dis-
persion of drops in shear flow and Eckstein et al. [7] investigated particle–particle interaction and their lateral migration in
an experimental setting. Rheology of (dilute) suspension of vesicles was investigated by Danker et al. [6], Loewenberg [15],
Ramanujan and Pozrikidis [28], and Vitkova et al. [35]. Danker et al. [6] investigated the rheological properties of a dilute
suspension of vesicles in shear flow analytically.

1.4. Synopsis of our method

We propose a computational scheme for the evolution of vesicles in a confined domain. The scheme builds upon our pre-
vious work [34]. We also extend our method to the case where there is a viscosity contrast between the suspending fluid and
the internal fluid of the vesicle. Our scheme is based on Lagrangian tracking of marker particles on the vesicle, semi-implicit
time discretization and spectral representation of the interface, together with high-order accurate quadrature rules. These
choices result in a spectrally accurate method in space and second-order accurate method in time.

High-order accuracy in space is ensured by using a Fourier basis discretization for all functions and computing derivatives
in Fourier domain, as well as high-order, Gauss-trapezoidal quadrature rules [1] for discretization of single-layer potentials.
In time, we use a semi-implicit marching scheme [2]. This discretization yields a linear system of equations for each time
step, which is solved using GMRES. One significant challenge in simulating vesicle dynamics is the numerical stiffness of
the governing integro-differential equations [34]. To gain insight on the spectral properties of operators we use a ‘‘frozen
coefficient” analysis on the unit circle. This analysis allows us to construct a preconditioner for the GMRES solver. Putting
everything together, we were able to achieve high accuracy in space and time, while taking large time steps without incur-
ring high computational costs. Our formulation for confined boundaries is based on the method in [20]. Finally, we resolve
nearly-singular integrals, which arise when vesicles come close the fixed boundary, using the method proposed in [36].

Throughout this paper, lower case letters will refer to scalars, and lowercase bold letters will refer to vectors. We use � for
the tensor product of two vectors and j�j to denote the measure of its argument (e.g. the Euclidean norm of a vector or the
area of a domain). We denote the jump across interfaces by sut :¼ u+ � u�, where u±(x) :¼ limh;0u(x ± hn), n denoting the
outward normal to the boundary. We denote the convolution of an integral kernel K with density g by
K½y;g�ðxÞ :¼

R
C Kðx; yÞgðyÞdsðyÞ, where the product inside the integral should be interpreted as a tensor operation when K

is a tensor and as a dot product when K is a vector. In Table 1, we list symbols and operators frequently used in this paper.
Finally, the rest of the paper is organized as follows: In Section 2, we state the problem and its formulation. In Section 3,

we outline the numerical scheme we use to solve the derived equations. In Section 4, we report results from numerical
experiments we performed to demonstrate the stability of the proposed time-marching scheme in different flow regimes
and geometry configurations. In particular, we investigate the effect of fixed boundaries on the time-stepping numerical sta-
bility of our scheme. We conclude in Section 4.4 with a discussion of the rheology of dilute suspensions of vesicle flows with
viscosity contrast.

2. Formulation

Consider a suspension of vesicles in an ambient Newtonian fluid. Let X be the domain of interest, an open bounded subset
of R2 that can be multiply-connected and whose boundary consists of M + 1 infinitely differentiable curves C0, . . . ,CM, among



Fig. 2. A typical domain of interest X (shaded area) with boundary Ci (i = 0, . . . ,M). The boundary of each vesicle is denoted by cj (j = 1, . . . ,N). The enclosed
domain by cj is denoted by xj.
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which, C0 denotes the enclosing boundary of the domain. The ambient fluid has viscosity l0. The vesicles are evolving under
the influence of an imposed velocity field. Let cp(p = 1, . . . ,N) denote the boundary of the pth vesicle, xp denote the domain
enclosed by cp, and lp denote the viscosity of the fluid inside that vesicle (see Fig. 2). Let C :¼

S
kCk and c :¼

S
pcp. We use x

or y to denote both a typical point in the domain X and a point on the interface c. When x 2 c, we define _x or xs as the inter-
facial velocity or the derivative of the x with respect to arc length.

When the Reynolds number is based on the vesicle size, the effect of inertial forces is insignificant and the fluid flow is
governed by the Stokes equation,
lDu�rp ¼ 0; div u ¼ 0; in X n c; ð2:1aÞ
where u(x, t) is the velocity field, p(x, t) is the pressure field, and l is the viscosity of fluid. We supplement (2.1a) with the
velocity no-slip condition on cp, and with velocity Dirichlet boundary condition on C as
uðx; tÞ ¼ _xðtÞ when x 2 c; and uðx; tÞ ¼ Uðx; tÞ when x 2 C; ð2:1bÞ
where _x, as we mentioned earlier, is the velocity of the points on the vesicle membrane. The assumption that the velocity
field is continuous across the vesicle interface, sut = 0, is implicit in our expression of no-slip condition. Henceforth, we drop
the explicit time dependence of the variables. Finally, to enforce the local inextensibility of the vesicles we require that the
surface divergence of the velocity field vanishes. That is
xs � us ¼ 0 for x 2 c: ð2:1cÞ
Here xs is the derivative of position of the points on c with respect to arc length, i.e. the tangent vector. For notational con-
venience, when x 2 c and u is defined on c we define PðxÞu :¼ xs � us; then the inextensibility condition can be written as
PðxÞu ¼ 0 for x 2 c.

2.1. Boundary integral formulation

Due to the continuity of the velocity field across the interfaces, we can follow the standard approach of potential theory
[20,25,23], and reformulate Eqs. (2.1a) and (2.1b) using layer potentials. It follows that the velocity at a point x is formally
given by
auðxÞ ¼ E½y;u; f�ðxÞ þ B½g;N;K�ðxÞ; x 2 X; a ¼
1 x 2 X n [pxp;

mp x 2 xp;

ð1þ mpÞ=2 x 2 cp;

8><
>: ð2:2aÞ
subject to the inextensibility constraint,
PðxÞu ¼ 0; x 2 c; ð2:2bÞ
where mp :¼ lp/l0 is the contrast between the viscosity of the fluid enclosed by pth vesicle and that of the background med-
ium, and f denotes the traction jump across the interface. As it is explained in [25,23] we have
E½y;u; f�ðxÞ :¼
XN

q¼1

Sq½y; f�ðxÞ þ Dq½y;u�ðxÞ: ð2:3Þ
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Operators Sq and Dq are the single- and double-layer hydrodynamic potentials for Stokes flow evaluated on the qth interface,
defined as
1 We
Sq½y; f�ðxÞ ¼
1

4pl0

Z
cq

� log qI þ r� r
q2

� �
fdsðyÞ; ð2:4Þ

Dq½y;u�ðxÞ ¼
1� mq

p

Z
cq

r � n
q2

r� r
q2 udsðyÞ; ð2:5Þ
in which r :¼ x � y and q :¼ jrj. B is the completed double-layer operator for confined Stokes flow with density g(y), defined as
B½g;N;K�ðxÞ :¼ D½y;g�ðxÞ þ N 0½y;g�ðxÞ þ
XM

k¼1

Rðx; ckÞnk þ
XM

k¼1

Sðx; ckÞkk; ð2:6Þ
where K = {k1, . . . ,kM} and N = {n1, . . . ,nM}. In Appendix A, we define D; N 0, R, S, N, and K and outline the derivation of B that
is based on [20]. Taking the limit of (2.2a) to the boundary C we obtain an equation for the double-layer density g
aUðxÞ ¼ �1
2
gðxÞ þ E½y;u; f�ðxÞ þ B½g;N;K�ðxÞ x 2 C: ð2:7Þ
Operator E represents the velocity induced by the evolution of the vesicle and operator B corresponds to the velocity due to
the imposed flow via the boundary C. Note that if we replace B with a far field u1 in Eq. (2.2a), we obtain the formulation for
the case of an unbounded flow. Also, no that we need the traction jump f to evaluate E. We give details on how to calculate
the traction jump in the following section.
2.2. Traction jump across the interface

In the absence of gravity,1 the traction jump across the interface depends exclusively on the material properties
and the configuration of the interface. The traction jump across the interface balances the forces caused by bending and tension
[26]. We can write f = fb + fr, where fb denotes the bending force and fr is the force due to tension. Let jb denote the
bending modulus of the vesicle, r the tension, and j the local curvature. Then, the elastic energy of the membrane is
given by epðj;rÞ ¼

R
cp

1
2 jbj2 þ r
� �

ds. The forces are obtained by taking the gradient of the membrane energy. See [25,34] for
details on the derivation of the expressions for these forces. Accordingly, forces can be written as fb = �jbxssss and fr = (rxs)s,
were the subscript s denotes differentiation with respect to arc length. For convenience, we introduce the following
notation:
BðyÞx ¼ �jbS½y;xssss�ðxÞ;
T ðy; xÞr ¼ S½y; ðrxsÞs�ðxÞ;
LðxÞ ¼ PðxÞT ðx;xÞ;
MðxÞ ¼ T ðx; xÞL�1ðxÞPðxÞ;
DðyÞu ¼ D½y;u�ðxÞ;

ð2:8Þ
and T ðxÞ :¼ T ðx;xÞ.
2.3. Scaling

Let �r, and �t denote the characteristic length and time and let L be the perimeter of the vesicle. We define �r :¼ L=2p as the
radius of the circle with perimeter L, and the time scale �t :¼ l0�r3=jb. We define the characteristic tension as �r :¼ jb=�r. For
the velocity scale, we consider two cases: an unbounded shear flow and a confined flow. Shear flow. We assume that
u1 = v[x2,0]T, where v is the shear rate. The characteristic shear rate is then �v :¼ 1=�t and the characteristic velocity is �r�v.
Confined flow. In this case, the characteristic velocity may be defined by U as the velocity defined on the boundary.

A parameter that determines the behavior of vesicles significantly is the reduced area, which is the contrast of vesicle’s
area to that of a circle with the same perimeter, D :¼ A=ðp�r2Þ.
2.4. Summary of the vesicles’ equations of motion

Incorporating the notation introduced in (2.8), for a Lagrangian point x we can write the governing equations as
can include gravity by adding (Dq)(g � x)n to the traction jump, where Dq = qout � qin is the density difference.
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Vesicle evolution : auðxÞ ¼
XN

q¼1

BqðyÞxþ T qðyÞrþDqðyÞuþ B½g;N;K�ðxÞ; x 2 c; ð2:9aÞ

Inextensibility constraint : PðxÞu ¼ 0; x 2 c; ð2:9bÞ

Fixed boundaries : aUðxÞ ¼ �1
2
gðxÞ þ E½y;u; f�ðxÞ þ B½g;N;K�ðxÞ; x 2 C; ð2:9cÞ
These equations are solvable for the interfacial velocity and tension, as well as double-layer density g on the fixed
boundaries.

3. Numerical algorithm

We use a multistep time-marching scheme. In Section 3.1, we give the details of our time-stepping schemes and in Sec-
tion 3.2, we outline our approach to spatial discretization. Following [34], we adopt a Lagrangian formulation, which simpli-
fies the implementation of the high-order multistep schemes.

3.1. Time discretization

We use backward difference formula (Appendix C) to advance in time, a generic form of which can be written as
unþ1 ¼ 1

Dt ðbxnþ1 � xoÞ, in which xo is a linear combination previous time steps and b depends on the order. Then, a semi-im-
plicit formulation of equation set (2.9c) can be written as
a
Dt
ðbxnþ1 � xoÞ ¼ BpðyeÞxnþ1 þ T pðyeÞrnþ1 þDpðyeÞunþ1 þ B½gn;Nn;Kn�ðxeÞ

þ
XN

q¼1
q–p

BqðyeÞxn þ T qðyeÞrn þDqðyeÞun
� �

; x 2 cp ð3:1aÞ

bPðyeÞxnþ1 ¼ PðyeÞxo ¼: g; ð3:1bÞ

aUðxÞ ¼ �1
2
gnþ1ðxÞ þ E½ynþ1;unþ1; fnþ1�ðxÞ þ B½gnþ1;Nnþ1;Knþ1�ðxÞ x 2 C; ð3:1cÞ
where, ye is the interfacial position obtained by extrapolation form previous locations (see Appendix C). We will use g to de-
note the right-hand side of (3.1b). C is fixed or has a prescribed motion; U may depend on time. We would like to make the
following remarks regarding our scheme:

� The vesicle-boundary interactions are treated explicitly.
� The vesicle-vesicle interactions are also explicit.
� For each vesicle, its new position and tension are computed semi-implicitly by solving a linear system of equations.
Algorithm 1. Semi-implicit time-marching.
Require: En
far; g;q
//Solving (3.6) for the vesicle
forp = 1 to N do

rexp  Lprnþ1

exp ¼ ag � Pq
 //Calculating the tension part of the RHS
r qþ T prnþ1
exp
xn+1 use GMRES to solve (3.6) with
right-hand side r and xe as initial guess.
rimp  Lprnþ1
imp ¼ �PðbDp þ ðDtÞBpÞxnþ1
 //Solving for r in (3.5) with known position xn+1
rnþ1  ðrnþ1
exp þ rnþ1

imp Þ=ðDtÞ

end for

unþ1  1

Dt ðbxnþ1 � xoÞ

fnþ1  jbxnþ1

ssss þ ðrnþ1xnþ1
s Þs
 //Solving (3.1c) for double-layer density g
r aU� E½xnþ1;unþ1; fnþ1�

gnþ1  ð�I=2þ BÞ�1r
 //The inverse can be precomputed
return xn+1, rn+1, gn+1
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To advance in time, first we need to solve the coupled system of Eqs. (3.1a) and (3.1b) to calculate the new position of the
vesicle xn+1 and tension rn+1. Then, we solve (3.1c) to calculate gn+1. We explore two different schemes to solve (3.1a) and
(3.1b).
3.1.1. Semi-implicit scheme
Let
En
far :¼

XN

q¼1
q–p

BqðyeÞxn þ T qðyeÞrn þDqðyeÞun
� �

þ B½gn;Nn;Kn�ðxeÞ; x 2 cp ð3:2Þ
Then, we rewrite (3.1a) as
a
Dt
ðbxnþ1 � xoÞ ¼ BpðyeÞxnþ1 þ T pðyeÞrnþ1 þDpðyeÞunþ1 þ En

far: ð3:3Þ
Upon rearranging, we obtain
½abI � bDp � ðDtÞBp�xnþ1 � ðDtÞT prnþ1 ¼ q; ð3:4Þ
where q :¼ ðaI �DpÞxo þ En
far (for brevity, we have dropped the notational dependence of the operators on ye). Notice that
abxnþ1 ¼ ðbDp þ ðDtÞBpÞxnþ1 þ ðDtÞT prnþ1 þ q:
Substituting into (3.1b), we get an equation for tension as a function of the vesicle’s configuration,
ðDtÞLprnþ1 ¼ ag � Pq� PðbDp þ ðDtÞBpÞxnþ1: ð3:5Þ
Substituting this in (3.4), the equation for the new position is
fabI þ ðMp � IÞðbDp þ ðDtÞBpÞgxnþ1 ¼ qþ T pL�1
p ðag � PqÞ: ð3:6Þ
Algorithm 2. Explicit time-marching.

Require: En
far; g;q

for p = 1 to N do
r qþ ðDtÞT prn

xn+1 update position using (3.7)
rn+1 solve for tension using (3.8)

end for
unþ1  1

Dt ðbxnþ1 � xoÞ
fnþ1  jbxnþ1

ssss þ rnþ1xnþ1
s

� �
s

//Solving (3.1c) for double-layer density g

r aU� E½xnþ1;unþ1; fnþ1�
gnþ1  ð�I=2þ BÞ�1r
return xn+1, rn+1, gn+1
3.1.2. Explicit scheme
Let En

far be defined as before. Another approach is to first calculate xn+1 explicitly and then compute the corresponding
rn+1. Therefore, (3.4) can be written as
abxnþ1 ¼ ðDtÞT prn þ qþ ðbDp þ DtBpÞxe: ð3:7Þ
Accordingly, the equation for tension becomes
ðDtÞLprnþ1 ¼ ag � Pq� PðbDp þ DtBpÞxnþ1: ð3:8Þ
In Algorithms 1 and 2, we give the pseudocode for our numerical schemes.

3.2. Spatial discretization

Let h 2 (0,2p] be a parametrization of the interface cp and hk = 2kp/n (k = 1, . . . ,n) be n uniformly distributed discretization
points. We have
xðhÞ ¼
Xn=2

k¼�n=2þ1

x̂ðkÞe�ikh:
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This enables us to use FFT to calculate x̂ and derivatives of x with spectral-accuracy, since we have assumed that c and C
belong to C1.

3.2.1. Quadrature rule
The single-layer potential S has a logarithmic singularity. For its integration, we use the hybrid Gauss-trapezoidal quad-

rature rule given in Table 8 of [1], designed to handle this kind of singularity. Let yk = y(hk), then
2 Alte
3 Not

Indepen
S½y; f�ðxÞ �
Xnþm

k¼1

wkSðx; ykÞfðykÞjyh;kj;
where n is the number of nodes, m is number of quadrature nodes, wk the quadrature weights, and yh is the Jacobian. The
number m is determined by the desired order of convergence for the integral.

The double-layer potential has no singularity in two dimensions and for x,y 2 c, limx?yD(x,y) = jt � t/2p. Thus, a compos-
ite trapezoidal rule will give spectral-accuracy since the integrands are periodic and smooth. Therefore,
D½y;u�ðxÞ � 2p
n

Xn

k¼1

Dðx; ykÞuðykÞjyh;kj:
3.3. Analysis of the spectral properties

We use spectral analysis of the operators defined on the unit circle to characterize the stiffness of the underlying problem.
If we use n Lagrangian points to represent the interface, as it is explained in detail in [34], the condition number of the single-
layer potential operator scales as O(n) and the condition number of the bending operator scales as O(n3). On the other hand,
the double-layer potential operator alters only the first three frequencies of the integrand.

The coefficient a ¼ 1þmq

2 and the operator D, given in (2.5). Now, consider three cases where m	 1, m � 1, and m� 1: (i)
m	 1: the vesicle acts more like a rigid body and in (3.6), 1

aD remains finite but 1
aB tends to zero and thus the double-layer

operator dominates. Therefore, the condition number of the whole operator is bounded. (ii) m � 1: the effect of double-layer
potential is minimal and the bending operator dominates. (iii) m� 1: the double-layer potential and bending terms are com-
parable to each other. In the last two cases, the condition number of the operator grows in cubic rate thereby requiring pre-
conditioning for the iterative solvers. We explore this in greater detail in our experiments in Section 4.1. The existence of
viscosity contrast has no effect on the tension operator and thus its spectral properties are the same as those explored in
[34].

In our time-stepping scheme, we require the solution of systems with the operators L, and I þ ðM� IÞðD þ ðDtÞBÞ. Based
on our spectral analysis here and in [34], the condition number of these system behave as O(n) and O(n3), where n is the
number of modes in space. In [34], we proposed a set of low-cost preconditioners for the position and tension solver. Since
the tension operator is exactly the same for all cases of viscosity contrast, what we had for the case of m = 1 carries over to the
general case. On the other hand, because the double-layer operator has a bounded condition number, the main source of ill-
conditioning for the position solver (at least at moderate values of viscosity contrast) is the bending operator and the pre-
conditioner proposed in [34] applies.

3.4. Computational cost of the semi-implicit scheme for a single time-step

Assume that we have N vesicles, with n discretization points per vesicle interface and m discretization points on the
boundary C (in the case of bounded flow, of course). The semi-implicit scheme involves ‘‘inversion” of three operators:
the prescribed-motion boundary double-layer, the inextensibility operator, and the position-update operator. And it also re-
quires evaluation of single- and double-layers, and differentiations on the vesicle-boundary.

The semi-implicit algorithm has two main components: one is the evaluation of the effect of boundaries on a vesicle’s
Lagrangian points and the other is the solution of (3.6) for the new position and tension. The are two facts that lead to a fast
algorithm: (1) the double-layer operator is well-conditioned and thus, GMRES converges to the solution in mesh-indepen-
dent manner;and (2) the boundary-vesicle and vesicle-vesicle interactions can be accelerated by the fast multipole method.
Thus, using GMRES, the calculation of the density over C requires O(m) work per time step.2 The evaluation the double-layer
at each Lagrangian point on the vesicle interface (evaluation of B) is O(m) and, using FMM, O(Nn + m) for all vesicles.3 Fur-
thermore, we use FFT to calculate the derivatives, thus the evaluation of traction jump on each vesicle requires O(n logn) per
time step. When we solve for the positions using (3.6), at each GMRES iteration of position, we solve for tension, which takes
O(Nn logn) time and thus, each GMRES iteration requires O(Nn logn) work. However, in Section 4.1, we demonstrate numeri-
cally that the number of iterations is nearly independent of the problem size (Table 4). Hence, the overall cost of updating
the positions and the tensions for all vesicles is O(Nn logn + m).
rnatively, when the boundary with prescribed motion is fixed, one could use a fast scheme to precompute the action of its inverse to a vector [17].
ice, that when the number of vesicles is high, one needs to implement a fast summation scheme for the Rotlet and Stokeslet terms. The Kernel
dent Fast Multipole Method can be used for this purpose [37].
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4. Numerical experiments

In this section, we present results on the convergence, stability, and algorithmic complexity of the proposed methods,
which we have implemented in MATLAB. We preform the following tests:

� We consider a single vesicle in Section 4.1. Our goal is to demonstrate the stability and accuracy of our scheme as a func-
tion of the parameters, specifically viscosity contrast m. We also report the dependence of tank-treading inclination angle
on a vesicle’s viscosity contrast and shear rate.
� We consider the dispersion of vesicles due to pairwise interaction and collision in shear flow is studied in Section 4.2.
� We consider the effect of fixed boundaries in Section 4.3 and their effect on the overall accuracy of our method.
� We consider the rheological properties of dilute suspensions of vesicles in Section 4.4.

4.1. Single vesicle

We consider the case of a single vesicle with viscosity contrast m suspended in an unbounded shear flow. In our exper-
iment, we consider m to be 0.01, 0.1, 1, 10, and 100. When the viscosity contrast is low, based on experiment and theory
[10,18], the vesicle undergoes a tank-treading motion at an equilibrium angle /m. When the viscosity contrast is high, the
vesicle tumbles. We first investigate the stability and convergence properties of the proposed numerical schemes. In Table
2, we report the largest uniform step-size required to maintain numerical stability for different shear rates and viscosity con-
trasts for a BDF method of order two for the semi-implicit time-marching scheme (we used a simple bisection method to find
these time steps). The time horizon is chosen such that the vesicle reaches steady-state or the desired dynamical phenom-
enon (i.e. tank-treading or tumbling is observed). The reduced area D is set to .4 and .75. Comparing these results with the
results of the explicit scheme given in Table 3, we see three orders of magnitude speed-up for most cases. In Figs. 3, and 4, we
show the configuration of the vesicle for different values of viscosity contrasts m and reduced area D. In Fig. 5, we show the
sedimentation shape of the vesicle under the influence of gravity.

In Table 4, we report the number of GMRES iterations (corresponding to D = .75 only). Observe that the number of iter-
ations for the tension solver is almost mesh-independent and viscosity contrast has no effect on the tension solver, as ex-
pected. The effect of the high condition number (caused by bending) becomes very pronounced in cases where the mesh
size equals 128 and 256 but our preconditioner compensates for that well.

Due to inextensibility and incompressibility, the length and area of vesicles should be preserved. In Table 5, we report the
relative error in area and length of a single vesicle in shear flow.

The inclination angle of vesicles in tank-treading motion is of physical interest since it can be compared with experimen-
tal results. Since we consider only two-dimensional vesicle flows, this comparison is qualitative. Based on theory, this incli-
nation angle depends only on the reduced area D and the viscosity contrast m. For any fixed D, there exists a mc such that for
Table 2
Stable step size for a second-order semi-implicit scheme. The initial vesicle configuration is the same as the one given in Fig. 3. When v = 0, the vesicle relaxes
to minimum energy equilibrium shape. Since there is no input energy from the ambient fluid flow, all step sizes are permissible and do not lead to (numerical)
instability. Comparing with Table 3, we see three orders of magnitude speed-up.

n m = .01 m = .1 m = 1 m = 10 m = 100

v = 1 10 1 10 1 10 1 10 1 10

D = .4
32 4e�1 2e�2 2e�1 1e�2 2e�1 7e�2 7e�1 9e�2 7e�1 7e�2
64 4e�1 1e�2 2e�1 1e�2 3e�1 5e�2 7e�1 2e�2 7e�1 5e�2
128 9e�2 3e�3 9e�2 6e�3 2e�1 6e�2 7e�1 9e�3 7e�1 3e�2
256 1e�2 1e�3 4e�2 2e�3 2e�1 6e�2 3e�1 3e�3 3e�1 2e�2

D = .75
32 7e�1 3e�2 7e�1 5e�2 7e�1 7e�2 7e�1 7e�2 7e�1 7e�2
64 7e�1 3e�2 7e�1 5e�2 7e�1 7e�2 7e�1 7e�2 7e�1 7e�2
128 7e�1 5e�3 7e�1 5e�2 7e�1 7e�2 7e�1 7e�2 7e�1 7e�2
256 2e�2 2e�3 3e�2 3e�3 7e�1 7e�2 7e�1 6e�3 4e�1 3e�2

Table 3
Stable step size for the first-order explicit scheme. Simulation parameters and the initial configuration of the vesicle are the same as the simulation shown in
Fig. 3.

n m = .1 m = 1 m = 10

v = 1 10 1 10 1 10

32 3e�4 2e�4 2e�3 1e�3 3e�3 1e�3
64 2e�5 2e�5 9e�5 1e�4 2e�4 2e�4
128 2e�6 3e�6 3e�6 5e�6 1e�5 2e�5
256 3e�7 2e�7 6e�7 3e�7 2e�6 1e�6



Fig. 3. The evolution of a single vesicle in an unbounded shear flow. The viscosity contrast m = .01, 1, and 100, v = 1, jb = 1, reduced area D = .75, and time
horizon T = 9. Lagrangian points on the vesicle membrane is colored for visual purposes only and has no other significance. When m < mc we see that the
vesicle reaches an equilibrium and then undergoes tank-treading motion (see Fig. 6 for further analysis). When m is large the vesicle tumbles.

Fig. 4. The same as Fig. 3 with the reduced area D = 0.2.

Fig. 5. Here we depict the sedimentation shape of a vesicle for different viscosity contrasts. The viscosity contrast m = .01, 1, and 100, jb = 1, reduced area
D = .75, Dq = 1, g = �40ey, and time horizon T = 1.
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viscosity contrasts larger than that, the vesicle starts to tumble. For m < mc, there exists an angle bm in which the vesicle tank-
treads. We investigate the dependence of the inclination angle bm (defined below) of a vesicle with reduced area D = .75. We
stopped the simulation when the rate of change in the inclination angle was less than one percent of the its value, i.e.
1
b

db
dt

��� ��� 6 :01. The alignment of the vesicle with the flow increases as the viscosity contrast is increased. A viscosity difference
of mc � 4.1 is the fold bifurcation point. Vesicles with larger viscosity difference undergo tumbling. As we further increase the
viscosity contrast, the frequency of tumbling increases. However, we did not investigate the effect of parameters on the fre-
quency of tank-treading and tumbling motions. Our stopping criteria explain the slight decrease in the dependence of bm ver-
sus the shear rate v.

We define the inclination angle as the angle between the principal axis corresponding to the smallest principal moment of
inertial with the x1-axis. We calculate the moment of inertia tensor J by
J ¼
Z

x
ðjrj2I � r� rÞdx ¼ 1

4

Z
c

r � nðjrj2I � r� rÞds;
where r = x � c is the distance of point x from the centroid c. The principal axes of inertia are the eigenvectors of J.



Fig. 6. For small values of viscosity contrast, a vesicle reaches steady-state and then undergoes a motion called tank-treading (see the bottom row of plots
in Fig. 3). Theory and experiment suggest that the inclination angle of the vesicle during tank-treading depends solely on the viscosity contrast m and the
reduced area D; this dependence is confirmed in our computations. Here, the reduced area D = .75. The critical value for viscosity contrast is mc � 4.1.

Table 4
Number of GMRES iteration averaged over 100 time steps. The time horizon T = 2/v (and 10 when v = 0), j = 1, and D = .75. GMRES tolerance is set to 10�8 for
the position solver and 10�12 for tension solver. The extrapolated position is used as starting point for the GMRES. The preconditioners are the Fourier spectrum
of the involved operator on the unit circle [34].

n m = .01 m = .1 m = 1 m = 10 m = 100

v= 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10

Position solver without preconditioner
32 13 19 13 11 18 10 8 14 7 6 10 7 5 8 8
64 17 35 21 17 34 20 19 29 15 14 20 11 7 12 8
128 41 82 49 43 81 46 47 72 34 34 48 23 16 27 13
256 103 194 122 108 193 116 119 178 84 85 120 55 40 64 31

Position solver with bending spectrum as preconditioner
32 14 23 21 11 23 16 11 18 12 8 10 8 4 8 6
64 11 25 25 11 25 22 13 20 15 9 11 8 4 8 7
128 13 28 26 13 28 23 14 22 17 10 12 9 4 10 7
256 14 32 29 14 32 25 15 25 18 10 13 9 4 10 8

Preconditioned tension solver
32 16 17 16 16 17 15 15 16 13 10 13 12 10 12 12
64 18 19 19 18 19 19 18 18 19 16 17 15 12 14 14
128 21 21 21 21 21 21 21 21 21 19 20 18 15 17 17
256 22 22 22 22 22 22 22 22 22 20 21 20 17 20 20

Table 5
The error in area en

A :¼ jA� A0 j=A0 and length en
L :¼ jL� L0 j=L0 in the evolution of a single vesicle in an unbounded shear flow with shear rate, v, of 10 and 250.

Time marching scheme is chosen to be second-order. Due to inextensibility and incompressibility, the area and length should be preserved. For these tests,
jb = 1, D = .75, time horizon T = 1/v, and time step is set to ts = T/n. At low shear rates we observed an erratic convergence behavior also noticed in [14,33,34].

n m = .04 m = 1 m = 25

en
Aðen

A=en�1
A Þ en

L ðen
L=en�1

L Þ en
Aðen

A=en�1
A Þ en

L ðen
L=en�1

L Þ en
Aðen

A=en�1
A Þ en

L ðen
L=en�1

L Þ

v = 10
32 2.49e�2 2.32e�5 3.66e�4 1.97e�4 3.66e�4 1.97e�4
64 6.26e�3 (3.98) 3.24e�4 (0.07) 8.70e�5 (4.20) 1.31e�4 (1.49) 8.70e�5 (4.20) 1.31e�4 (1.49)
128 1.56e�3 (3.99) 1.31e�4 (2.46) 2.11e�5 (4.11) 5.60e�5 (2.35) 2.11e�5 (4.11) 5.60e�5 (2.35)
256 3.92e�4 (3.99) 4.78e�5 (2.74) 5.23e�6 (4.04) 1.83e�5 (3.04) 5.23e�6 (4.04) 1.83e�5 (3.04)

v = 250
32 8.79e�04 2.46e�02 2.97e�06 1.75e�04 2.39e�04 1.73e�04
64 1.56e�04 (5.62) 6.16e�03 (3.99) 4.50e�05 (0.07) 3.16e�05 (5.56) 1.15e�05 (20.7) 3.13e�05 (5.54)
128 2.31e�05 (6.76) 1.50e�03 (4.09) 7.69e�06 (5.85) 8.56e�06 (3.69) 3.02e�06 (3.81) 6.59e�06 (4.75)
256 3.69e�06 (6.26) 3.72e�04 (4.05) 1.36e�06 (5.66) 2.23e�06 (3.83) 6.73e�07 (4.50) 1.50e�06 (4.39)
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Table 6
Stable step size for a second-order semi-implicit scheme of two vesicles in shear flow. Both vesicles have reduced area D = .75. Snapshots of the flow with m = 1
are shown in the plot.

−3 0 3
−2

0

2

t = 1.2

−3 0 3

t = 2.4

−3 0 3

t = 3.6

−3 0 3

t = 4.8

−3 0 3

t = 6

n m = .01 m = .1 m = 1 m = 10 m = 100

v= 1 10 1 10 1 10 1 10 1 10

32 7e�1 3e�2 7e�1 5e�2 7e�1 7e�2 4e�1 5e�2 1e�3 5e�4
64 7e�1 3e�2 7e�1 5e�2 7e�1 7e�2 4e�1 4e�2 7e�3 1e�3
128 5e�2 5e�3 1e�1 1e�2 7e�1 7e�2 3e�1 3e�2 1e�2 1e�3
256 1e�2 1e�3 2e�2 2e�3 7e�1 7e�2 2e�1 9e�4 1e�2 1e�3
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4.2. Multiple vesicles

First, let us briefly investigate the numerical properties of our scheme in the case of multiple vesicles. In Table 6, we report
the stable time-step in the presence of multiple vesicles. The vesicle-flow parameters used in Table 6 remain the same as
those in Table 2. For most viscosity contrasts, the stable time-step size is similar to that of a single vesicle. However, for
m = 100, we observe an order of magnitude smaller time-steps. This time-step growth was expected, if we consider the fact
that we use the viscosity of the suspending fluid for scaling and thus when m = 100, vesicles behave as rigid bodies, which
thus, require smaller time steps in order to resolve their dynamics.

The collision of deformable particles has received substantial attention in the literature. From one aspect, the particle–
particle interactions in a suspension will produce irregular motions one of which is the lateral migration of particles. This
migration causes dispersion in the suspension. Eckstein et al. [7] discussed the importance of this phenomena and performed
experiments involving rigid particles. Loewenberg and Hinch [16] performed a numerical study of the collision of two
deformable drops in shear flow.

Here, we investigate the effect of vesicles’ viscosity contrast on their lateral migration in an unbounded shear flow. Ini-
tially one of the vesicles is located at the origin and the other one at [�10, .5]T. The shear rate v = 2 and vesicles’ bending
modulus jb is chosen to be 0.1. The relative orientation of vesicles is a factor in the dynamics of collision and a statistical
approach is needed to study its effect. Here, to minimize the effect of vesicles’ orientation we choose the vesicle be very close
to a circle with reduced area D = .98. We define the offset between two vesicles to be d :¼ jcy,1 � cy,2j, where cy,i is the y coor-
dinate position of ith vesicle’s centroid (i = 1,2).

In Fig. 7, snapshots of the interaction between vesicles are shown. Due to the inextensibility of a vesicle’s membrane and
the incompressibility of its fluid, vesicles maintain their circular shape at all times. In the last column of Fig. 7, we plot the
streamlines at an intermediate time.
Fig. 7. Snapshots of the position of two vesicles in shear flow. Initially, one of the vesicles is located at the origin and the other one at [�10, .5]T. To minimize
the effect of relative orientation of vesicles on the dynamics of collision we choose the vesicles to be two identical ellipsoids with D = .98 and jb = .1. In the
last column we plot the streamlines at an intermediate time t = 7.75. Each row corresponds to a different viscosity contrast m. The offset between the
centroids of the vesicles is plotted in Fig. 8.



Fig. 8. The offset d between the centroids of two vesicles in shear flow. A few exemplary snapshots of interacting vesicles are plotted in Fig. 7. In the inset,
the offset of the vesicle at x = 10, denoted by d1, is plotted versus viscosity contrast m.

Fig. 9. Here, we depict the shape of a evolution of a single vesicle in a constricted tube. Each subplot corresponds to a different vesicle size: r denotes the
relative size of the vesicle with respect to diameter of the tube (defined in the text). A Poiseuille flow boundary condition on the inlet and outlet of the tube
is prescribed (vector plot). In order to investigate, the error incurred due to explicit treatment of the walls, we repeat a ‘‘similar” test without boundaries, in
which we offset the initial position of vesicle by 1. This experiment is depicted in the bottom-right plot. In all of the experiments, m = 1 and jb = .5.
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In Fig. 8, we plot the offset d versus x for different values of viscosity contrast m. The qualitative dependence of the offset
on position is the same. However, we can see in the inset, the final offset d1 does not monotonically depend on m. Initially, by
increasing the viscosity contrast, the final offset increases. But as m becomes larger than one, the offset starts to decrease. The
decrease in the final offset value when m	 1 is expected because the vesicle behaves increasingly like a rigid particle in
which case the Stokes flow is reversible. However, the initial increase comes as a surprise. This trend is in contrast with
the monotone decrease of the final offset for bubbles [16]. In a separate paper, different aspects of the dynamics of vesicle
collision and dispersion will be considered.
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4.3. Vesicles in confined domains

The main question in the confined geometry case concerns the numerical stability of our scheme, which treats vesicle-
boundary interaction explicitly. To examine the stability of our scheme, we consider the flow of a vesicle in a constricted
tube. On the fixed boundaries, we impose velocity boundary conditions that correspond to an unperturbed Poiseuille flow.

In this experiment, we consider three cases with viscosity contrasts .04, 1 and 25, respectively, and jb = .5. There are 400
grid points on the fixed boundary and 128 points on the vesicle. The initial shape of the vesicle is an ellipsoid with reduced
area D = .94. We increase the size of the vesicle compared to the opening of the channel, and monitor the error. As a measure
of the relative size, we set r :¼ (a + b)/2c, where a and b are, respectively, major and minor diameter of vesicle and c is the size
of the gap in the tube. To have an estimate on the errors in case of unbounded flow (and thus being able to distinguish the
effect of the walls), we also simulate the evolution of a single vesicle in unbounded Poiseuille flow. We report the errors in
Table 7. Also observe that in case of unbounded Poiseuille flow, the vesicle starts to migrate toward the center line. This phe-
nomenon was studied in detail in [11].

In Table 7 we compare the stable step size corresponding to the second-order time-stepping scheme of bounded flow
with that of an unbounded Poiseuille flow. For the case of a vesicles with small viscosity contrast (m = .2), their faster time
scale makes them responsive to the sudden outward flow in the divergent part of the tube and therefore for large vesicles,
time steps should be chosen such that the vesicle does not cross the boundary of the domain.

4.4. Rheology of a suspension

In this section, we discuss numerical homogenization for suspension rheology. The effective viscosity of a suspension can
be defined as the viscosity of a homogeneous Newtonian fluid that has the same energy dissipation per macroscopic volume
element. We derive the effective viscosity as the constant of proportionality between rates of energy dissipation with and
without the inclusions. This definition coincides with the one derived by averaging the stress over a volume for particulate
flows [9]. In Appendix B, we give a brief derivation of average stress tensor in a vesicle suspension (see Table 8).

For dilute suspensions, the particle–particle interactions are negligible and the effective stress can be written in terms of
flow past an isolated or ‘‘reference” vesicle [3,4]. In simple shear flow, the ambient velocity field is given by u(x,y) = [vy,0]T,
where v is the shear rate. For a suspension of vesicles in such a flow, we define
Table 8
Stable s

n

32
64
128
256

Table 7
In this t
that the

m = .2

m = 1

m = 5
½l� :¼ leff � l0

/l0
¼ 1

vl0T

Z Te

Ti

hrp
12idt; ð4:1Þ
in which,
hrpi ¼ 1
jxj

Z
c
½f� xþ l0ðm� 1Þðu� nþ n� uÞ�ds; ð4:2Þ
where [l] is referred to as the ‘‘intrinsic viscosity”, / is the areal contrast of vesicles, rp is the perturbation in the stress due
to presence of vesicles and h�i is the spatial average (see Appendix B for its derivation). Ti is the point at which we start the
tep size for a second-order semi-implicit scheme of a vesicle in a constricted tube compared to that of the unbounded Poiseuille flow.

Unbounded (r = .87) r = .87 r = 1.12

m = .2 1 5 .2 1 5 .2 1 5

7e�1 7e�1 7e�1 7e�1 7e�1 7e�1 6e�3 7e�1 7e�1
7e�1 7e�1 7e�1 7e�1 7e�1 7e�1 1e�2 7e�1 7e�1
7e�1 7e�1 7e�1 7e�1 7e�1 7e�1 3e�2 7e�1 7e�1
7e�1 7e�1 7e�1 7e�1 7e�1 7e�1 9e�3 7e�1 7e�1

able we report errors in area eA :¼ jA � A0j/A0 and length eL :¼ jL � L0j/L0 for the simulation in Fig. 9. For values of r > 1.25 a vesicle with D = .94 is larger
gap and cannot pass though it (due to inextensibility and incompressibility).

Unbounded r (contrast of vesicle’s representative length to the size of the opening)

(r = .87) .58 .68 .78 .87 .97 1.07 1.12

eA 4.73e�4 1.29e�4 1.30e�4 1.17e�4 8.02e�5 3.18e�5 3.57e�4 1.90e�4
eL 1.95e�4 2.58e�4 2.47e�4 2.41e�4 2.39e�4 2.42e�4 1.93e�4 1.97e�4

eA 6.65e�4 7.13e�3 2.19e�4 3.69e�4 4.17e�4 4.27e�4 4.30e�4 2.98e�3
eL 4.72e�4 9.89e�5 5.25e�4 8.21e�4 9.33e�4 1.05e�3 1.19e�3 1.23e�3

eA 2.78e�4 2.85e�5 2.02e�6 6.45e�6 1.46e�5 4.35e�5 1.89e�4 2.67e�4
eL 1.03e�4 7.17e�4 2.98e�4 1.68e�4 1.05e�4 1.43e�4 1.69e�4 1.95e�4



Fig. 10. The intrinsic viscosity of the homogeneous fluid vs. viscosity contrast of the suspension for different values of reduced area D. As we increase m, the
vesicles align with the flow and the intrinsic viscosity decreases. When m > mc, tumbling occurs and the reference vesicle does not maintain a fixed
orientation. The frequency of this tumbling motion is inversely proportional to mc: as we increase m, vesicles tumble faster, which in turn causes an increase
in the intrinsic viscosity [l].
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measurement and is chosen such that the reference vesicle has reached a steady-state (for m < mc), Te is the end of simulation,
and T = Te � Ti. In our formulation, the traction jump across the interface is given by f = fb + fr = �jbxssss + (rxs)s. Using inte-
gration by parts, we obtain
Z

c
f� xds ¼ �

Z
c
ðjbj2n� nþ rt� tÞds: ð4:3Þ
As a validation of our scheme, in Fig. 10 we report the intrinsic viscosity for a dilute suspension of vesicles in simple shear
flow. The vesicle is an ellipse with reduced area D = .75 and bending modulus of 1. When 0 < m < mc, the vesicle tank-treads.
Larger values of m cause the vesicle to align itself with the flow thus resulting in less resistance. On the onset of tumbling, we
observe that the intrinsic viscosity increases.

Misbah [18] derived an analytical expression for the effective viscosity of a suspension of quasi-spherical vesicles in the
tank-treading region. According to [18], we have
½l�a :¼ 5
2
� ð23mþ 32ÞD

16p
: ð4:4Þ
The dashed line in Fig. 10, corresponds to [l]a obtained from this formula. The qualitative agreement between the analytical
result for quasi-spherical vesicles and our numerical simulations for 2D vesicles is good. To our knowledge, there is no anal-
ysis for the case of a tumbling motion.

5. Conclusions

We proposed a semi-implicit numerical scheme to simulate the motion of inextensible vesicles suspended in bounded or
unbounded domains. For several test-cases, we have demonstrated, through the use of numerical experiments, that the pro-
posed scheme does not exhibit a mesh-dependent high-order stability constraint on the time-step size. Our scheme exhibits
second-order accuracy in time and spectral-accuracy in space. We have presented efficient low-cost preconditioners to solve
the discrete evolution equations by iterative solvers. An additional extension of our work would be to design an algorithm
that allows decoupling of the time-step size from the shear rate. We believe, however, that such an algorithm would require
the use of nonlinear solvers and contact detection methods that fully couple the vesicle position updates. Such coupling
would be more difficult to implement and analyze. Our next step will be the extension of this scheme in three dimensions.

Appendix A. Completed indirect solution of Stokes flow in a confined geometry

Consider the domain X given in Section 2 in the absence of vesicles. The solution of the Stokes Eq. (2.1a) in this domain
can be written as a double-layer integral with density g [20,23]. The velocity and pressure at a point x 2X can be written as
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uðxÞ ¼ D½y;g�ðxÞ ¼ 1
p

Z
C

r � n
q2

r� r
q2 gds; ðA:1Þ

pðxÞ ¼ K½y;g�ðxÞ ¼ �l
p

Z
C

n � g
q2 � 2

r � n
q2

r � g
q2 ds: ðA:2Þ
As it is nicely explained in [12], Eq. (A.1) cannot represent general flow fields. In particular, it cannot represent the flow due
to rigid body motions. To compensate for this deficiency, following [20], we add Stokeslet and Rotlet terms for each
Ck(1 6 k 6M) to Eq. (A.1). The Stokeslet is the Green’s function for the Stokes equation, which is the same as the single-layer
kernel S given in (2.5). The Rotlet is the antisymmetric component of the Stokes doublet defined by
Rðx; yÞðnÞ :¼ n
l

r?

q2 ; ðA:3Þ
for any strength n. For a vector r, we define r? ¼ ðr1; r2Þ? :¼ ðr2;�r1Þ. Both the Stokeslet and Rotlet are centered at an interior
point ck of the domain enclosed by the boundary component Ck. For convenience, we choose k, the strength vector for each
Stokeslet, and n to depend linearly on the unknown density g in the following manner:
kk;1 :¼ 1
2p

Z
Ck

/1ðyÞ � gðyÞdsðyÞ; kk;2 :¼ 1
2p

Z
Ck

/2ðyÞ � gðyÞdsðyÞ; ðA:4Þ
and
nk :¼ 1
2p

Z
Ck

/3ðyÞ � gðyÞdsðyÞ; ðA:5Þ
where /1 = d1i, /2 = d2i (i = 1, 2) are the rigid body translations in the plane and /3 is the rigid body rotation, that is
/3ðxÞ ¼ x?.

Since the flow is confined by the contour C0, as noted in [12,23], conservation of mass (div u = 0) implies that the velocity
field defined by (A.1) satisfies the Stokes equation only when g satisfies

R
C0

g � nds ¼ 0. To enforce this orthogonality condi-
tion, we follow [12] and add an additional operator N 0½y;g�ðxÞ ¼

R
C0

N0ðx; yÞgðyÞ ds(y) with kernel N0(x,y) = n(x) � n(y) to
the right-hand side of (A.1). Hence, the velocity for x 2X can be represented by
uðxÞ ¼ D½y;g�ðxÞ þ N 0½y;g�ðxÞ þ
XM

k¼1

Rðx; ckÞnk þ
XM

k¼1

Sðx; ckÞkk ¼: B½g;N;K�ðxÞ; ðA:6Þ
where N = {n1, . . . ,nM}, K = {k1, . . . ,kM}. In this way, we obtain a system of Fredholm integral equations of the second kind.
Taking the limit of (A.6) to points x on the boundary of the domain, we obtain an equation for g supplemented with (A.4)
and (A.5) for calculation of kk and nk
UðxÞ ¼ �1
2
gðxÞ þ B½g;N;K�ðxÞ x 2 C; ðA:7aÞ

kk ¼
1

2p

Z
Ck

gðyÞdsðyÞ; nk ¼
1

2p

Z
Ck

/3ðyÞ � gðyÞdsðyÞ: ðA:7bÞ
Along with g, we need the jumps at the boundaries to be able to evaluate the pressure and stress. We have
sut ¼ g; spt ¼ �2lðgs � tÞ; srnt ¼ 0;
in which t is the tangent vector to the boundary, gs denotes the derivative of density with respect to the arc length, and r is
the stress tensor on the boundary.

Appendix B. Average stress in a suspension of vesicles

Consider a suspension of vesicles in an ambient fluid with viscosity l0. Each vesicle has a viscosity contrast mp. Let X de-
note an arbitrary volume containing several vesicles; let h�i :¼ 1

jXj
R

X �dx, and let x+ denote the infinitesimally enhanced vol-
ume containing vesicles. The average stress tensor hri can be broken into two parts as
hri ¼ 1
jXj

Z
X
rdx ¼ 1

jXj

Z
Xnxþ

rdxþ 1
jXj

Z
xþ

rdx: ðB:1Þ
By definition r = �pI + 2lD, where D is the strain rate tensor. Substituting into (B.1), we have
hri ¼ 1
jXj

Z
Xnxþ

�pI þ 2l0Ddxþ 1
jXj

Z
xþ

rdx; ðB:2Þ

¼ 1
jXj

Z
X
�pI þ 2l0Ddxþ 1

jXj

Z
xþ

rþ pI � 2l0Ddx; ðB:3Þ



Table 9
The backward difference coefficients for pth order accurate backward difference method.

p b xo xe

1 1 xn xn

2 3/2 2xn � 1
2 xn�1 2xn � xn�1

3 11/6 3xn � 3
2 xn�1 þ 1

3 xn�2 3xn � 3xn�1 + xn�2

4 25/12 4xn � 3xn�1 þ 4
3 xn�2 � 1

4 xn�3 4xn � 6xn�1 + 4xn�2 � xn�3
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using the fact p = �tr (r)/3 and the divergence theorem for the second integral we obtain
¼ �hpiI þ 2l0hDi þ
1
jXj

Z
@xþ
½rn� x� 1

3
ðrn � xÞI � l0ðu� nþ n� uÞ�ds: ðB:4Þ
For the fluid inside each vesicle, we have div r = 0. It follows that:
0 ¼
Z
@x�p

rn� xds�
Z

x�p

rdx ¼
Z
@x�p

rn� x� 1
3
ðrn � xÞI � lpðu� nþ n� uÞ

	 

ds: ðB:5Þ
Taking the limit of (B.4) and (B.5) to cp, subtracting the results, and denoting the trace of �hri/3 by P, we obtain
hri ¼ �PI þ 2l0hDi þ
1
jXj

X
p

Z
cp

f� x� l0ð1� mpÞðu� nþ n� uÞ
� �

ds: ðB:6Þ
Appendix C. Backward difference coefficients

We can use the backward difference method to approximate the derivatives and extrapolate forward. We can write
dx
dt �

bxnþ1�xo

Dt , where the coefficients are given in Table 9.
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